Hello World!
An Instructive Case for TTC

Steffen Mazanek

steffen.mazanek@gmail.com

Abstract. This case comprises several primitive tasks that can be solved
straight away with most transformation tools. The aim is to cover the
most important kinds of primitive operations on models, i.e. create, read,
update and delete (CRUD). To this end, tasks such as a constant trans-
formation, a model-to-text transformation, a very basic migration trans-
formation or diverse simple queries or in-place operations on graphs have
to be solved.

The motivation for this case is that the results expectedly will be very in-
structive for beginners. Also, it is really hard to compare transformation
languages along complex cases, because the complexity of the respective
case might hide the basic language concepts and constructs.

1 Introduction

The case proposed here comprises not just a single transformation task. Rather it
consists of a set of primitive tasks each of which can be solved with just a few lines
of code with most transformation tools. So, this case is not really a big challenge.
However, the result will be an extensive set of small transformation programs
that will be very instructive for beginners. Note that the goal of the TTC is to
compare transformation languages/tools. However, the effort for investigating
and comparing solutions for a complex case is remarkable. Moreover, it is really
hard to learn the language constructs and concepts from large programs. Finally,
it can be expected that many transformation tools will participate in this case,
because it is neither time consuming nor difficult to solve. Actually, no tool
developer could effort not to solve the “Hello World” case.

2 Tasks

In the following the primitive tasks comprised by this case are introduced. The
rationale of this selection is that the four basic functions create, read/query,
update and delete (CRUD) should be covered. Note that certain subtasks are
marked as optional, i.e. those are not required to solve the case but are considered
only as extensions.

H Greeting Orosting
= text E'St'il'lg text="Hella World"

Fig. 1. The “Hello World” metamodel and the example instance

2.1 Hello World!

— Provide a constant transformation that creates the example instance of the
“Hello World” metamodel given in Fig. 1.

— Consider now the slightly extended metamodel given in Fig. 2. Provide a
constant transformation that creates the model with references also shown
in Fig. 2.

— Next, provide a model-to-text transformation that outputs the GreetingMes-
sage of a Greeting together with the name of the Person to be greeted. For
instance, the model given in Fig. 2 should be transformed into the String
"Hello TTC Participants!".!

H Greeting ‘Gresting
greetifjgMessage person
0.4 0.1 GreetingMessage Persan
El GreetingMessage] H Person tesd="Hello" name="TTC Participants"
= text | EString = name : EString

Fig. 2. The extended “Hello World” metamodel and the example instance

2.2 Count Matches with certain Properties

For the following querying tasks the input models are simple graphs conforming
to the metamodel given in Fig. 3. As results numbers should be returned, again
wrapped into an object of the respective result type.

— Provide a model query that counts the number of nodes in a graph.
— Provide a model query that counts the number of looping edges in a graph,
i.e. edges where the source and the target node coincide.

! Note that we provide as accompanying material a metamodel, Result.ecore, that
contains classes for returning primitive results such as strings or numbers.

_ H Node
nodes = name : EString
o.*
src g
B Graph 0.1 01
[]
edges
o H Edge

Fig. 3. The simple graph metamodel

— Provide a model query that counts the number of isolated nodes in a graph,
i.e. nodes that are neither the source nor the target of any edge.

— Provide a model query that counts the number of matches of a circle con-
sisting of three nodes, i.e. the pattern shown in Fig. 4 where nl, n2 and n3
are pairwise distinct. Note that each circle in the model should be matched
three times.

— Optional: Provide a model query that counts the number of dangling edges
in a graph, i.e. edges where either the source or the target node is missing.

ni:Mode

nihode

Edoe

n:Mode

Fig. 4. Circle of three nodes (simplified representation of edge objects)

2.3 Reverse Edges

Provide a transformation that reverses all edges in a graph conforming to the
simple graph metamodel given in Fig. 3. This is an update operation.

2.4 Simple Migration

Provide a transformation that migrates a graph conforming to the metamodel
given in Fig. 3 to a graph conforming to the metamodel given in Fig. 5. The
name of a node becomes its text. The text of a migrated edge has to be set to

the empty string.

B araphComponernt § Graph
o fext | EString

ges

M

H Mode

H Edge

arc 0.1

M+

trg 0.1

Fig. 5. The evolved graph metamodel

Optional: Provide a topology-changing migration that transforms graphs of
the metamodel given in Fig. 3 to graphs as defined by the metamodel in Fig. 6.

H Graph

}

0..* | nodes

H Node

o text : ESiring

linksTo
0,.*

Fig. 6. The even more evolved graph metamodel

2.5 Delete Node with Specific Name and its Incident Edges

Given a simple graph conforming to the metamodel of Fig. 3. Provide a trans-
formation that deletes the node with name “nl1”. If a node with name “nl1” does
not exist, nothing needs to be changed. It can be assumed that there is at most
one occurrence of a node with name “nl1”.

Optional: Provide a transformation that removes the node “nl” (as above),
but also all its incident edges.

2.6 Optional: Insert Transitive Edges

Consider the input graph as a relation R. Provide a transformation that creates
the graph corresponding to the relation R U R2. To this end, for every three
nodes nl, n2 and n3 and two edges el, e2 where el points from nl to n2 and e2
points from n2 to n3, insert an additional edge pointing from nl to n3, if there
is no edge connecting nl and n3 already (cf. Fig. 7).

n2
el e?

nl
n3

Fig. 7. Insertion of transitive edges

3 Evaluation

Since this case is not really a challenge an official award is not appropriate here.
Instead, every team that provides correct solutions for all subtasks will receive
"Hello World” TTC cups for all team members.

4 Conclusion

This case comprises several easily solvable tasks. The results can still be ex-
pected to be very useful. Most importantly, they can be explored by beginners
in order to get an impression how basic problems can be solved using the dif-
ferent transformation approaches. Note that I plan to use these tasks and the
corresponding solutions as an initial fill for the currently developed online judge
for model transformations, a system that will support the upload of cases and
solutions, which will be black-box-tested and automatically ranked according to
criteria such as performance, LOC and user ratings.

The website of this case proposal will be https://sites.google.com/site/
helloworldcase/. The metamodels given in this proposal as well as example
input/output models can be downloaded from this site.

Acknowledgment

I would like to thank Pieter van Gorp for proposing a meaningful rationale for
the actual task selection and for his idea to call this case “Hello World”.

