
Solving the Compiler Optimisation Case with GROOVE

Arend Rensink Eduardo Zambon

Department of Computer Science
University of Twente, The Netherlands
{rensink, zambon}@cs.utwente.nl

1 Introduction

This report presents a partial solution to the Compiler Optimisation case study using groove.
We explain how the input graphs provided with the case study were adapted into a groove
representation and we describe an initial solution for Task 1. This solution allows us to auto-
matically reproduce the steps of the constant folding example given in the case description. We
did not solve Task 2.

2 GROOVE

groove1 [1] is a general purpose graph transformation tool set that uses simple labelled graphs.
The core functionality of groove is to recursively apply all rules from a predefined set (the
graph production system – GPS) to a given start graph, and to all graphs generated by such
applications. This results in a state space consisting of the generated graphs.

The main component of the groove tool set is the Simulator, a graphical tool that integrates
(among others) the functionalities of rule and host graph editing, and of interactive or automatic
state space exploration.

2.1 Host Graphs

In groove, the host graphs, i.e., the graphs to be transformed, are simple graphs with nodes
and directed labelled edges. In simple graphs, edges do not have an identity, and therefore
parallel edges (i.e., edges with same label, and source and target nodes) are not allowed. Also,
for the same reason, edges may not have attributes.

In the graphical representation, nodes are depicted as rectangles and edges as binary arrows
between two nodes. Node labels can be either node types or flags. Node types [resp. flags] are
displayed in bold [resp. italic] inside a node rectangle.

2.2 Rules

The transformation rules in groove are represented by a single graph and colours and shapes
are used to distinguish different elements. Figure 1 shows a small example rule.

• Readers. The black (continuous thin) nodes and edges must be present in the host graph
for the rule to be applicable and are preserved by the rule application;

1Available at http://groove.cs.utwente.nl

1

http://groove.cs.utwente.nl


C

P P

A

parentparent

child

Legend:
A Ab Matched and preserved
A Ab Forbidden
A Ab Matched and deleted
A Ab Created

Figure 1: Example groove rule and legend

• Embargoes. The red (dashed fat) nodes and edges must be absent in the host graph for
the rule to be applicable;

• Erasers. The blue (dashed thin) nodes and edges must be present in the host graph for
the rule to be applicable and are deleted by the rule application;

• Creators. The green (continuous fat) nodes and edges are created by the rule application.

Embargo elements are usually called Negative Application Conditions (NACs). When a node
type or flag is used in a non-reader element but the node itself is not modified, the node type
or flag is prefixed with a character to indicate its role. The characters used are +, −, and !, for
creator, eraser, and embargo elements, respectively.

Additional notation and functionalities of the tool are presented along with the developed
solution for the case.

3 Solution

In this section we describe a partial solution for Task 1 of the case study.

3.1 Input from the Firm representation

The input graphs provided with the case study are stored in GXL format and conform to
the Firm representation. groove also uses GXL to store graphs but it was not possible to
immediately load the given files because the input graphs have certain properties that are not
compatible with groove (e.g., edges with attributes) and therefore require some adaptation.

The case description lists all node and edge types that may occur in the program graphs.
These types are also included in the GXL files given on the form of a type graph. Based on these
two sources of information we constructed our own type graph2 in groove, shown in Figure 2.

Each node in the figure corresponds to a node type; some have associated attributes. Types
shown in bold italic inside dashed nodes are abstract. Edges with open triangular arrows
indicate type inheritance. A key point in the type graph shown in Figure 2 is the following. In
groove edges do not have types or attributes while in Firm the edges do. To encode these
extra properties in groove, edges have to be nodified, i.e., each edge of the Firm graph is
transformed to a node in the groove graph with a proper sub-type of Edge and associated
position attribute. Nodes representing operations, i.e., sub-types of Node, are connected via
Edge nodes and associated edges labelled in and out. The remaining elements of the type graph
of Figure 2 correspond directly to the ones described in the case study.

After creating our type graph, the program graph used in the constant folding example was
manually created by inspecting the given GXL file and the corresponding figure in the case

2groove enforces static typing, so there is no overhead for type checking while performing a transformation.
Using a type graph is a very convenient way to avoid simple mistakes (e.g., typos) while creating a grammar.

2



GREATER_EQUAL

ReturnConst
value: int

Cond

Load
volatile: bool

Memory

Or

Not

NOT_EQUAL

Phi

TRUE

Block

Relation

Argument
position: int

Store
volatile: bool

LESS

Shl

False

Edge
position: int

Keep

StartBlock

Add

SymConst
symbol: string

And

Node

LESS_EQUAL

Dataflow

True

FALSE

Shrs Eor

Controlflow

Sync

Cmp

Binary
associative: bool
commutative: bool

Shr

Start

Div

GREATER

EndBlock

Mod

Jmp

EQUAL

MulSub

End

relation

inout

Figure 2: Type graph for the adapted input graphs.

study. Our start graph in a plain representation, i.e., without block containment visualisation,
is shown in Figure 3.

The structure of the program graph shown in Figure 3 directly corresponds to the one given
in the case description. Edge nodification clutters the representation but, if one so desires, this
issue could be handled on the GUI level, with a dedicated display format, in the same vein as is
done in the case description.

We would like to point that, despite the current manual adaptation of the input graphs,
there are no technical limitations that prevent the automatic loading of Firm graphs using the
conversion described above. Automatic loading was not done due to time limitations only.

3.2 Verifier

We implemented the sanity checks described in the case study in negated form such that if an
invalid configuration is produced, then a checking rule matches. Figure 4 shows rule consts,
that is triggered if there is a constant located in a Block that is not the StartBlock. The other
checks given in the case study were implemented with the rules named single-start, single-end,
containment, phi-check, and pos-check. (See the grammar for the solution in the SHARE image.)

3.3 Constant Folding

To solve the constant folding example given in the case description we created seven rules to
perform the folding of operations and another three cleanup rules to handle dangling edges and
constants without references.

Figure 5 shows rule add-fold-int, that performs the last step of the transformation: folding

3



Dataflow
position = 0

Dataflow
position = −1

Const
value = 1

Jmp

Controlflow
position = 0

Block

Dataflow
position = 1

Dataflow
position = −1

Controlflow
position = 0

Dataflow
position = −1

Jmp

Cond

Return

Dataflow
position = 0

Dataflow
position = −1

Dataflow
position = −1

Dataflow
position = 0

True
position = 0

Memory
position = 0

Block

Dataflow
position = −1

Controlflow
position = 0

Cmp
associative = false
commutative = false

End

Block

Block

Add

LESS

Const
value = 0

False
position = 0

EndBlock

Dataflow
position = −1

Const
value = 1

Phi

Dataflow
position = 1

Dataflow
position = 1

Dataflow
position = −1

Dataflow
position = −1

Controlflow
position = 1

Start

Dataflow
position = −1

Dataflow
position = 1

Dataflow
position = −1

StartBlock

Dataflow
position = 0

Dataflow
position = −1

in

in

in

in

in

out

in

in

out

out

relation

out

in

in

out

in

outout

out

in

out

out

out

out

out

out

out

out

in

out

out

out

in

in

in

in

in

in

in

out

in

in

out

in

in

out

out

in

out

in

in

out

in

out

out

Figure 3: Program graph of minimum plus one function with constants.

! StartBlock
Block

Const

Dataflow
position = −1

in

out

Figure 4: Sanity check rule consts.

4



Dataflow
position = −1

int

Add

∀>0

int

Const

Const

Dataflow

Dataflow
position = 1

int

StartBlock

Dataflow
position = 0

Const

add

value

π0

value

out

π1

in

out

out

value

out

out

in

atin

Figure 5: Rule add-fold-int, for folding the addition of two integer constants.

of an Add operation with two constant operands. The Add node and the two Dataflow edges
associated with the operands are deleted by the rule. The constants used in the addition are not
removed because they may be referenced by other operations. The addition of the two values
is performed by the product node (the node with a diamond shape). The two operands are
indicated by the edges labelled with π and the result is the value node pointed by the edge
labelled add. A new constant is created with the result of the addition and all Dataflow edges
incoming into Add are re-routed to the newly created constant. We use a special quantifier node
(labelled with ∀>0) to redirect an arbitrary number of Dataflow edges.

The remaining rules are similar. We created one rule for each operation folding, except for
the handling of unreachable blocks, which uses two rules, one for removing blocks and another
for adjusting the edges of Phi nodes. (Again, for the complete solution, we refer the reader to
the grammar that is available in the SHARE image.) The final program graph for the running
example is shown in Figure 6.

We did not create folding rules for the operations that do not occur in the given example.
Still, once more, we do not foresee any technical difficulties to do so. The remaining operations
were not handled only due to limited time availability.

4 Conclusion

In this report we presented the key points of our solution for Task 1 of the case study. Task 2
was not addressed. We conclude with an overview according to the criteria listed in the case
study and we give some constructive criticism for the authors about the case description.

• Completeness. The test suite for the case study was not yet available at the time of this
writing. Still, since we did not cover all operations, it is expected that no program graph
other than the example discussed can be handled. Absence of automatic loading of graphs
is another limitation that will prevent the use of the test suite.

• Performance. N/A. See reasons in the item above.

• Conciseness. As a rule of thumb, we have one rule for each operation.

• Purity. The solution is entirely made of graph transformations, no glue code is necessary.

5



Controlflow
position = 0

Dataflow
position = −1

End

Block

Dataflow
position = −1

EndBlock

Controlflow
position = 0

Return

Const
value = 1

Start

Dataflow
position = −1

Dataflow
position = −1

Dataflow
position = 1

StartBlock

Memory
position = 0

out

in

out

in

out

in

in

in
in

out

in

out

in

out

out

out

Figure 6: Final configuration for the constant folding example.

4.1 Comments on the case study description

While we understand that creating a case study is a challenging enterprise we still would like to
indicate some points of improvement to the authors.

1. GXL integration. The given GXL files do not pass XML validation tools. See, e.g.,
http://www.xmlvalidation.com/.

2. Number of operations. We agree that the main goal of the case, namely, the per-
formance comparison between tools is interesting. However, the case study itself makes
reaching a point where this comparison is possible quite difficult. In particular, are all
the operations listed in the case study really necessary? There are almost 30 of them. It
seems that there are many details that could be abstracted away, e.g., volatile loads and
stores. In addition, there are many binary operations that are virtually the same. If a
tool can handle integer addition, it is expected that it will also be able to perform other
arithmetical operations in the same way. We understand that due to the nature of this
case study these simplifications may be hard to do, but the bottom line is that we believe
the participants would like to use the case study to evaluate and improve their tool (for
example, by trying to improve its performance) preferably without having to spend many
hours solving a problem that is full of details of the original domain.

3. Task 2. The description of Task 2 is too concise and therefore quite hard to understand.
Maybe for those with a background in compiler construction the task is obvious but for
others we believe this is not the case.

References
[1] Ghamarian, A., de Mol, M., Rensink, A., Zambon, E., and Zimakova, M.; Mod-

elling and analysis using groove . International Journal on Software Tools for Tech-
nology Transfer (STTT). Springer – Berlin, March 2011, http://dx.doi.org/10.1007/
s10009-011-0186-x.

6

http://www.xmlvalidation.com/
http://dx.doi.org/10.1007/s10009-011-0186-x
http://dx.doi.org/10.1007/s10009-011-0186-x

